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Abstract. This contribution is concerned with the robust stability analysis for
linear systems with time-varying delay arising from networked control systems.
The time-varying delay is supposed to be bounded and fast-varying. By con-
structing a new complete Lyapunov-Krasovskii functional, delay-dependent ro-
bust stability conditions are derived in terms of Linear Matrix Inequalities. The
derivative of the new complete nominal Lyapunov-Krasovskii functional along
the trajectories depends on the complete state and the state derivative.
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1 Introduction

Conventional control systems are composed of interconnected controllers, sensors and
actuators following a point-to-point architecture. As an alternative, the use of a mul-
tipurpose shared network to connect spatially distributed elements results in flexible
architectures and generally reduces installation and maintenance costs [7]. These kind
of systems are known as Networked Control Systems (NCSs). The relevance of NCSs
is due to their broad range of application as mobile sensor networks [14], remote
surgery [12], automated highway systems and unmanned aerial vehicles [15, 16]. In
contrast to using several dedicated independent connections, the use of a shared network
introduces new challenges as the presence of time-varying network-induced delays,
aperiodic sampling or packet dropouts. Since an implementable model usually needs to
possess some stability properties, in this work we are interested in the robust stability
analysis for a class of networked control systems (NCSs) where the control loops are
closed through a real-time network forming a delay control system.

The dynamical systems with time delays commonly known as Time-Delay Sys-
tems (TDSs) is a continuous field of interest and development. Principally, because
time-delay is one of the main causes of instability of systems. Nowadays, with the in-
creasing expectations of dynamics performance the robust stability analysis of TDSs is
of practical significance. Time-delay robustness is often studied for situations in which
the delay is uncertain but remains constant throughout time. While much research has
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been done and stability criteria have been derived for systems with uncertain constant
time-delays, the recent research has been focused in the case where the time delay is
time varying. The significance of such research effort is tied to the interest in designing
control algorithms for large-scale networked systems.

Most of the results devoted to the stability of TDSs with uncertain delays consider
as assumption the stability of the system free of delays, and next, in the time domain,
use appropriate Lyapunov-Razumikhin functions or Lyapunov-Krasovkii Functionals
(LKFs) combined with Linear Matrix Inequalities (LMIs) to derive some upper bounds
on the delay values µ . This type of delays is considered as uncertain small delays with
zero nominal values and perturbations from [0,µ] [17, 3, 13]. There are cases where the
previous assumption, the stability of system free of delays fails, but it may be stable
for some non-zero delay. This type of delays is called non-small delays [1] and their
stability analysis cannot be performed by using simple LKFs [5]. In order to treat
effectively the fast-varying delay commonly the proposed LKFs involve terms such
as
∫ 0
−h
∫ t

t+θ
ẋ(s)Wẋ(s)dsdθ and then the derivative along trajectories of the involved

functionals present quadratic derivative terms. This is the reason why in [2] negative
quadratic terms, depending on ẋ(t) were inserted into v̇n. There, the compressive tech-
niques for stability analysis of uncertain time-delay systems: free weighting matrices
and application of Jensens inequality [5] were extended to the case of complete LKF.
The derivative of the complete LKF in [2] depends on the present state only.

The complete type LKF introduced in [11] are constructed on the base of the so-
lution of a linear matrix differential-difference equation on a finite time interval which
satisfies additional symmetry and boundary conditions. This solution is called a delay
Lyapunov matrix and it inherits properties of the classical quadratic Lyapunov functions
for ordinary delay free differential equations. These LKFs prove to be useful in the
robustness analysis of time delay systems [11]. In [10], the complete LKF was con-
structed for the uncertain system, which did not explicitly depend on the bounds of the
uncertainties. As a result, the stability conditions were rather complicated, and induced
some conservatism. In [4] a ‘complete’ LKF, depending on two delay Lyapunov like
matrices, is constructed whose derivative along the trajectories depend on the state and
its derivative which allows a less conservative treatment of the delay perturbation.

In this contribution, inspired in [11], [4], and [2], we enlarge the class of func-
tionals by adding the functionals whose time derivative includes a given derivative
term and functionals which correspond to the perturbed system. It is worth to men-
tion, that the construction of the new proposed functional depends only on the delay
Lyapunov matrix. The new complete LKF is used to obtain delay-dependent robust
stability conditions for TDSs arising from NCSs. The paper is organized as follows:
the problem statement is presented in Section II. Because of their key role in obtaining
the sufficient robust stability conditions, some basic results concerning the quadratic
LKF of complete type are recalled in Section III and also a new LKF is constructed.
In Section IV we show how the new functional of complete type is used for the robust
stability analysis of the system with uncertain time-varying delay. The main result of
the contribution is illustrated with an example. In Section V some concluding remarks
end the contribution.
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2 Problem Statement

In this work we consider a simple NCS setup shown in Fig. 1 with ”initial” and ”causal”
delays τa,τb. By considering lumped delays a simple delayed model of the linear NCS
is (see [18] for more details)

ẋ(t) = Ax(t)+Bu(t− τa− τb), u(t) = Kx(t), (1)

where x(t) ∈Rn is the state variable, u(t) ∈Rm is a control input vector; A ∈Rn×n, and
B ∈Rn×m are known real constant matrices. The corresponding closed-loop system has
the following TDS with time-varying state form:

ẋ(t) = A0x(t)+A1x(t− τ(t)), x(t) = ϕ(t), t ∈ [−h̄,0], (2)

where x(t)∈Rn is the system state at time t, t ≥ 0; A0 = A, A1 = BK are known constant
real matrices with appropriate dimensions, ϕ is a continuously differentiable vector-
valued initial function and h̄ is an upper-bound on the time delay τ(·). The state xt is
defined by xt(θ) = x(t + θ) for θ ∈ [−h̄,0]. The uncertain delay τ(t) is supposed to

Fig. 1. A simple NCS with delays.

have the form τ(t) = h+η(t), where h > 0 is a nominal constant value and η(·) is a
time-varying perturbation. We assume that η(t) is a sign-varying piecewise continuous
function satisfying

|η(t)| ≤ µ ≤ h, (3)

with known upper-bound µ , i.e. τ ∈ [h−µ,h+µ]. We consider the following assump-
tion:

A1 Given the constant nominal value of the delay h > 0, the nominal TDS

ẋ(t) = A0x(t)+A1x(t−h), (4)

is exponentially stable.

Problem 1. Determine the value of µ for which the uncertain TDS with time-varying
state (2) remains stable provided that the nominal system (4) is exponentially stable.
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3 Preliminaries

As suggested in [4] we consider the following form of LKF:

v = vn + va, (5)

where vn is a nominal complete LKF which corresponds to the necessary and sufficient
conditions for stability of the nominal system (4) and va consists of additional terms
and depends on µ and va→ 0 for µ → 0. Therefore, for µ → 0 v→ vn. The latter will
guarantee that if the conditions for the stability of the nominal system are feasible, then
the stability conditions for the perturbed system will be feasible for small enough µ .

The LKFs of complete type are such that their derivative along the solutions of the
system is more substantial than a quadratic form of the state, allowing to prove that they
admit a quadratic lower bound [11]. Under assumption A1, given a continuous initial
function ϕ(θ) in θ ∈ [−h,0], there exists a nominal complete LKF [11] of the form

v0(xt ,W ) = xT (t)U(0)x(t)+2xT (t)
0∫
−h

U(−h−θ)A1x(t +θ)dθ +

0∫
−h

0∫
−h

xT (t +θ2)AT
1

×U(θ2−θ1)A1x(t +θ1)dθ1dθ2 +

0∫
−h

xT (t +θ) [W1 +(h1 +θ)W2]x(t +θ)dθ , (6)

whose time derivative along nominal system (4) is d
dt v0(xt)

∣∣∣
(4)

=−w0(xt), where

w0(xt) = xT (t)W0x(t)+ xT (t−h)W1x(t−h)+
0∫
−h

xT (t +θ)W2x(t +θ)dθ , (7)

and W =W0 +W1 +hW2.
Observe that functional (6) is defined by the matrix valued function U(·) known as

delay Lyapunov matrix. This matrix is as important for the functionals, as the classical
Lyapunov matrix is for the quadratic Lyapunov functions in the case of delay free
systems. Also note that the derivative of the LKF (7) depends on the complete state
of the system.

Definition 1. [9] The n× n matrix U(s) is a delay Lyapunov matrix of system (4)
associated with a symmetric matrix W if it satisfies the properties:

U ′(s) =U(s)A0 +U(s−h)A1, s≥ 0, (8)

U(−s) =UT (s), s≥ 0, (9)

−W =U(0)A0 +AT
0 U(0)+U(−h)A1 +AT

1 U(h). (10)

The existence and uniqueness issues of the delay Lyapunov matrix are investigated
in [9, 8]. With the choice of W =W0+W1+hW2 we can obtain a delay Lyapunov matrix
U(·) as the solution of Eq. (8) satisfying conditions (9) and (10), which can be used for
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the construction of the LKF (6). The functional (6) is said to be of complete type if
matrices Wi, i = 0,1,2, are positive definite.

In order to treat effectively the fast-varying delay it is necessary that the derivative
along trajectories of the involved functionals present quadratic derivative terms. Then
in the following subsection we construct a new LKF whose derivative along trajectories
of the nominal system (4) presents quadratic derivative terms. The construction of the
new LKF unlike the one presented in [4] depends only in the delay Lyapunov matrix,
see Definition 1.

3.1 A New LKF for The Nominal TDS

A broader class of functionals can be useful for achieving less conservative delay-
dependent stability conditions for uncertain non-small delays. We look now for func-
tionals of complete type that along with the nominal system (4) satisfy

v̇n(xt) =−wn(xt), (11)

with wn(xt) = w0(xt)+ w̄n(xt), where w0(·) is defined in (7) and

w̄n(xt) = ẋT (t)Zẋ(t)+ xT (t)ZA0ẋ(t)+ ẋT (t)AT
0 Zx(t).

We assume that the matrix Z is symmetric and such that[
W0 +AT

0 ZA0 +ZA0A0 +AT
0 AT

0 Z AT
0 ZA1 +ZA0A1

AT
1 ZA0 +AT

1 AT
0 Z W1 +AT

1 ZA1

]
> 0. (12)

Substituting into w̄n(xt), A1x(t − h) by ẋ(t)−A0x(t) and considering the nominal
system (4), we find that

w̄n(xt) =−xT (t)AT
0 ZA0x(t)+ xT (t−h)AT

1 ZA1x(t−h)+
d
dt

xT (t)(AT
0 Z +ZA0)x(t).

Next, by assumption A1 the integration from 0 to ∞ of expression (11) gives

vn(xt) =−xT (t)[AT
0 Z +ZA0]x(t)+

∞∫
0

xT (t)[W0−AT
0 ZA0]x(t)dt

+

∞∫
0

xT (t−h)[W1 +AT
1 ZA1]x(t−h)dt +

∞∫
0

0∫
−h

xT (t +θ)W2x(t +θ)dθdt.

If we define

W =W0 +W1 +hW2−AT
0 ZA0 +AT

1 ZA1, (13)
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we can obtain a LKF constructed with delay Lyapunov matrix U(·) associated with
matrix (13). The functional vn(xt ,W ) is of the form

vn(xt ,W ) =xT (t)[U(0)−AT
0 Z−ZA0]x(t)+2xT (t)

0∫
−h

U(−h−θ)A1x(t +θ)dθ

+

0∫
−h

0∫
−h

xT (t +θ2)AT
1 U(θ2−θ1)A1x(t +θ1)dθ1dθ2

+

0∫
−h

xT (t +θ)
[
W1 +AT

1 ZA1 +(h+θ)W2
]

x(t +θ)dθ .

(14)

Observe that the new LKF (14) depends only in the delay Lyapunov matrix, see
Definition 1. Also note that it preserves the structure of the nominal functional (6).

4 Robust Stability Analysis

In this section, for the robust stability analysis of the perturbed system (2) the nominal
system (4) is assumed to be stable. We derive the values µ for which system (2) remains
asymptotically stable for all perturbation values η(t) satisfying (3). To obtain such
bounds following [10], for t ≥ 0, we represent the perturbed system in the form

ẋ(t) = A0x(t)+A1x(t−h)−A1

t−h∫
t−h−η(t)

ẋ(s)ds. (15)

We consider the LKF (5), v = vn + va, where vn is the new complete LKF (14) and
va is the LKF which corresponds to the uncertainty

va(xt) =µ

t∫
t−h

xT (s)Sx(s)ds+

µ∫
−µ

t∫
t+θ−h

ẋT (s)Rẋ(s)dsdθ

+µr
0∫
−h

t∫
t+θ

xT (s)AT
1 U(θ +h)UT (θ +h)A1x(s)dsdθ ,

(16)

with S, R, are n×n positive matrices and r a positive scalar. Observe that v→ vn when
µ → 0.

Then, by using only the delay Lyapunov matrix properties (8)-(10), the time deriva-
tive of (5) along the trajectories of the perturbed system (15) is obtained. First, for the
new LKF (14) by straightforward computation we obtain that v̇n(xt ,W ) =−wn(xt)+∆ ,
where

∆ =−2

A1

t−h∫
t−h−η(t)

ẋ(s)ds


T[U(0)−AT

0 Z−ZA0

]
x(t)+

0∫
−h

UT (h+θ)A1x(t +θ)dθ

 .
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Considering the perturbed system (15), v̇n(·) is rewritten as

v̇n(xt) =−w0(xt)− ẋT (t)Zẋ(t)−2xT (t)ZA0ẋ(t)−2

A1

t−h∫
t−h−η(t)

ẋ(s)ds


T

×

[[
U(0)−ZA0

]
x(t)+Zẋ(t)+

0∫
−h

UT (h+θ)A1x(t +θ)dθ +
1
2

ZA1

t−h∫
t−h−η(t)

ẋ(s)ds

]
.

Next, we calculate the derivative of the functional va(xt) along the trajectories of
the perturbed system (15):

v̇a(xt) =µxT (t)Sx(t)−µxT (t−h)Sx(t−h)+2µ ẋT (t)Rẋ(t)−
t−h+µ∫

t−h−µ

ẋT (s)Rẋ(s)ds

+µrxT (t)AT
1 U A1x(t)−µr

0∫
−h

xT (t +θ)AT
1 U(θ +h)UT (θ +h)A1x(t +θ)dθ ,

where

U =

0∫
−h

U(θ +h)UT (θ +h)dθ . (17)

Applying the Jensen integral inequality [5], we obtain the following estimations:

t−h+µ∫
t−h−µ

ẋT (s)Rẋ(s)ds≥
t−h∫

t−h−η(t)

ẋT (s)Rẋ(s)ds≥ 1
µ

t−h∫
t−h−η(t)

ẋT (s)dsR
t−h∫

t−h−η(t)

ẋ(s)ds,

0∫
−h

xT (t +θ)AT
1 U(θ +h)UT (θ +h)A1x(t +θ)dθ

≥ 1
h

0∫
−h

xT(t+θ)AT
1U(θ+h)dθ

0∫
−h

UT(θ+h)A1x(t+θ)dθ .

It is a fact that the use of free-weighting matrices reduce more the conservatism of
the delay-dependent stability conditions [6]. Then we insert into v̇(xt) negative quadratic
terms, depending on ẋ(t) by adding the following zero term:

δ = 2

[
− ẋ(t)+A0x(t)+A1x(t−h)−A1

t−h∫
t−h−η(t)

ẋ(s)ds

]T [
N1x(t)+N2ẋ(t)

]
= 0,

where N1 and N2 are free n×n matrices.
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Considering the previous estimations and inserting the zero term δ , the time deriva-
tive of the LKF (5) admits the following estimation:

v̇(xt)≤ ζ
T

Φζ ,

where

ζ
T =

[
xT (t) ẋT (t) 1

µ

t−h∫
t−h−η(t)

ẋT (s)ds
0∫
−h

xT (t +θ)AT
1 U(θ +h)dθ xT (t−h)

]
and

Φ =


φ11 φ12 φ13 φ14 φ15
∗ φ22 φ23 φ24 φ25
∗ ∗ φ33 φ34 φ35
∗ ∗ ∗ φ44 φ45
∗ ∗ ∗ ∗ φ55

 , (18)

here φ11 = −W0 +AT
0 N1 +NT

1 A0 + µrAT
1 U A1 + µS, φ12 = AT

0 N2−NT
1 − ZA0, φ13 =

−µ [U(0)−ZA0 +N1]
T A1, φ14 = 0, φ15 = NT

1 A1, φ22 = −Z−N2−NT
2 + 2µR, φ23 =

−µ [Z +N2]
T A1, φ24 = 0, φ25 = NT

2 A1, φ33 =−µR−µ2AT
1 ZA1, φ34 =−µAT

1 , φ35 = 0,
φ44 =− µr

h In×n, φ45 = 0, φ55 =−W1−µS, hereafter ∗ stands for symmetric elements of
the symmetric matrix. We have proved the following result which solves Problem 1.

Theorem 1. Assume that the nominal TDS (4) satisfies A1. Given n×n-positive definite
matrices Wi, i = 0,1,2. Let Z be defined by (12), U(·) be defined by (8)-(10) with W sat-
isfying (13), and U be defined by (17). Then, the uncertain system (15) is asymptotically
stable for a continuous time-varying function |η(t)|< µ if there exist n×n-matrices N1,
N2, and n× n-positive definite matrices R and S, and a positive scalar r such that the
LMI: Φ < 0 holds, where Φ is that of (18).

4.1 A Benchmark Comparison

In this subsection, the combination of functionals with prescribed time derivative in-
cluding quadratic derivative terms, the functionals corresponding to the uncertainty and
the free weighting matrices is discussed. In the contribution [2], it should be noted
that functional va does not vanish when µ → 0. The LMI condition is similar to the
one here obtained. In the contribution [2], the free matrix N2 is necessary in order to
guarantee the negativity of the corresponding LMI for any upper-bound µ . This fact is
evidenced in element φ22. This gives sense to the introduction of the derivative quadratic
term −ẋ(t)Zẋ(t) in the derivative of the proposed LKF (14). Additional benefits are
obtained with the use of the past state x(t−h) in the derivative of the LKF (14) as can
be appreciated in element φ55.

For [4], firstly it should be noted that a little error is committed when the derivative
of the nominal LKF along the perturbed system is calculated. Considering the nominal
complete LKF Vn (equation (19)) proposed in [4] and the system with uncertain delay
(15), the correct derivative of the LKF along the perturbed system is

V̇n(xt) =−xT (t)W̃0x(t)− ẋT (t)W̃1ẋ(t)+ ∆̃ , (19)
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where ∆̃ =−2

[
A1

t−h∫
t−h−η(t)

ẋ(s)ds

]T [
Ũ(0)x(t)+W̃1ẋ(t)+

0∫
−h

QT (h+θ)A1x(t +θ)dθ +

1
2W̃1A1

t−h∫
t−h−η(t)

ẋ(s)ds

]
. Here matrices Ũ(·) and Q(·) are defined by (20a) and (29b) in

[4], respectively. It is worth to mention that matrix Ũ(θ) = Ũ0(θ)+Ũ1(θ) is defined in
terms of a nominal delay Lyapunov matrix Ũ0(θ) and on a matrix satisfying an algebraic
expression Ũ1(θ) = AT

0 X(θ)A0 + AT
1 X(θ + h)A0 + AT

0 X(θ − h)A1 + AT
1 X(θ)A1 and

X(θ) =
∞∫
0

KT (t)W1K(t +θ)dθ . K(·) is the fundamental matrix for system (4). It should

be pointed out that the key of the construction of the LKF proposed in [4] resides in the
matrix Ũ0(θ). This is the principal difference with our contribution, the construction of
the new LKF (14) just depends on a delay Lyapunov matrix U(xt ,W ) defined by (8)-(10)
with W satisfying (13). The cost for construct the new complete LKF (14) in a simple
fashion is the introduction of cross terms in the derivative of the form xT (t)ZA0ẋ(t).
This will result in conservative estimation of upper-bound µ but marginal compared
with the stability criteria if the same technique is applied to the LKF proposed in [4].

Example 1. Consider the system:

ẋ(t) =
(

0 1
−1 −2

)
x(t)+

(
0 0
−1 1

)
x(t− τ(t)). (20)

For τ(t) = h + η(t), where h = 1 and η(t) is a sign-varying piecewise continuous
function satisfying |η(t)| ≤ µ .

With W0 = 1I, W1 = W2 = 0.0001I, by applying Theorem 1 we find that for µ =
0.11 the LMI involved is feasible. Hence, the system with uncertain non-small delay
τ(t) = 1+η(t) with |η(t)| ≤ 0.11 is asymptotically stable. This upper-bound is the
same as the one obtained with the LKF proposed in [4] with the correct derivative (19)
and following the majorization procedure presented there. Following [2] with W0 = 1I,
W1 =W2 = 0 we find µ = 0.049.

With W0 = 1.5I, W1 = 0.0001I, W2 =W1 we get from (12) that

Z =

[
1.6662 0.7424
0.7424 0.8237

]
.

With W =W0+W1+h1W2−AT
0 ZA0+AT

1 ZA1, following a semi-analytic procedure
we obtain

U(0) =
[

5.8238 1.1312
1.1312 0.9164

]
and U =

[
28.2404 3.6132
3.6132 0.9188

]
.

Then, by applying Theorem 1 we find that for µ = 0.15 the LMI involved is feasible.
Hence, the system with uncertain non-small delay τ(t) = 1+η(t) with |η(t)| ≤ 0.15 is
asymptotically stable. By considering the approach of free weighting matrices applied
to the LKF presented in [4] with W̃1 = W̃2 = I2×2 and the additional functional (16) one
may find a less conservative bound µ = 0.17.
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5 Concluding Remarks

In the present contribution a modification of complete LKFs is developed. The new
complete LKF is used for the robust stability analysis of TDSs with uncertain fast-
varying time delay arising from NCSs. It is evident that the computation of the delay
Lyapunov matrices is crucial for a successful application of the quadratic functionals
to the analysis of the uncertain time-delay systems. Given matrices W0, W1, and W2,
matrices U(0) and U are used to obtain sufficient stability condition. A numerical
example illustrates the design procedure.
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